Protocols Utilizing Constant pH Molecular Dynamics to Compute pH-Dependent Binding Free Energies
نویسندگان
چکیده
In protein-ligand binding, the electrostatic environments of the two binding partners may vary significantly in bound and unbound states, which may lead to protonation changes upon binding. In cases where ligand binding results in a net uptake or release of protons, the free energy of binding is pH-dependent. Nevertheless, conventional free energy calculations and molecular docking protocols typically do not rigorously account for changes in protonation that may occur upon ligand binding. To address these shortcomings, we present a simple methodology based on Wyman's binding polynomial formalism to account for the pH dependence of binding free energies and demonstrate its use on cucurbit[7]uril (CB[7]) host-guest systems. Using constant pH molecular dynamics and a reference binding free energy that is taken either from experiment or from thermodynamic integration computations, the pH-dependent binding free energy is determined. This computational protocol accurately captures the large pKa shifts observed experimentally upon CB[7]:guest association and reproduces experimental binding free energies at different levels of pH. We show that incorrect assignment of fixed protonation states in free energy computations can give errors of >2 kcal/mol in these host-guest systems. Use of the methods presented here avoids such errors, thus suggesting their utility in computing proton-linked binding free energies for protein-ligand complexes.
منابع مشابه
Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria
BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer's disease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria is e...
متن کاملIsothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...
متن کاملCalculations of pH-dependent binding of proteins to biological membranes.
Binding of proteins to membranes is often accompanied by titration of ionizable residues and is, therefore, dependent on pH. We present a theoretical treatment and computational approach for predicting absolute, pH-dependent membrane binding free energies. The standard free energy of binding, DeltaG, is defined as -RTln(P(b)/P(f)), where P(b) and P(f) are the amounts of bound and free protein. ...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملCofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding
Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H(+) efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylat...
متن کامل